МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИРОДООБУСТРОЙСТВА

КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

•••	УТВЕРЖДАЮ	•••••
Декан	строительного фаг А.Г.Журавлева	культета
	,,	_20 <u>13</u> Γ.

2. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «МАТЕМАТИКА»

Направление подготовки (специальности) 271101 «Строительство уникальных зданий и сооружений»

Квалификация (степень) - специалист Курс обучения 1 – 2 Семестр 1 – 4 Форма обучения очная

1. Цель дисциплины

Освоение студентом фундаментальных знаний и умений в математике, позволяющих использовать математический аппарат для решения профессиональных задач и самостоятельно расширять и углублять знания в области математики.

2. Место дисциплины в структуре ООП

Дисциплина «Математика» относится к математическому, естественнонаучному и общетехническому циклу базовой части и является обязательной е изучению.

Студент, приступая к изучению дисциплины должен обладать знаниями, умениями и навыками в области основных элементарных функций, их свойств и графиков, уметь выполнять алгебраические и тригонометрические преобразования, решать алгебраические и тригонометрические уравнения и неравенства, знать свойства плоских фигур, объемы и площади поверхностей пространственных фигур.

Дисциплина «Математика» является предшествующей таких дисциплин как: Информатика, Физика, Механика, дисциплины профессионального цикла и профильной направленности.

3. Требования к результату освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- владение основными методами, способами и средствами получения, хранения, переработки информации, навыками работы с компьютером как средством управления информацией (ПК-3);
- использование основных законов естественнонаучных дисциплин в профессиональной деятельности, применение методов математического анализа и моделирования, теоретического и экспериментального исследования (ПК-5);
- способность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь для их для решения соответствующий физико математический аппарат (ПК-6).

В результате изучения дисциплины студент должен:

• знать

- фундаментальные основы высшей математики, включая алгебру, геометрию, математический анализ, теорию вероятностей и основы математической статистики (в соответствии с $\Phi \Gamma OC$);

уметь

- формулировать физико—математическую постановку задачи исследования; выбирать и реализовывать методы ведения научных исследований, анализировать и обобщать результаты исследований, доводить их до практической реализации (в соответствии с $\Phi\Gamma$ OC);
- самостоятельно использовать математический аппарат, содержащийся в литературе по строительным наукам, расширять свои математические познания (в соответствии с $\Phi\Gamma OC$);

• владеть

- математическим аппаратом для разработки математических моделей процессов и явлений и решения практических задач профессиональной деятельности (в соответствии с $\Phi\Gamma OC$),
- первичными навыками и основными методами решения математических задач из общеинженерных и специальных дисциплин специализации (в соответствии с ФГОС).

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 18 зачетных единиц.

Pud makuai nakama	Всего		Семестры				
Вид учебной работы	часов	1	2	3	4		
Аудиторные занятия (всего)	306	85	68	85	68		
в том числе:							
Лекции	136	34	34	34	34		
Практические занятия (ПЗ)	170	51	34	51	34		
Лабораторные работы (ЛР)							
Самостоятельная работа (всего)	342	95	76	95	76		
в том числе:							
Курсовой проект (работа)	_	_		-	-		
Расчётно-графические работы (кол-	_	_		-	-		
BO)							
Реферат	_	_		_	ı		
Другие виды самостоятельной ра-	342	95	76	95	76		
боты (подготовка к занятиям,							
зачетам и экзаменам)							
Вид промежуточной аттестации		экзамен	зачет	экзамен	зачет		
Общая трудоемкость час.	648	180	144	180	144		
зач. ед.	18	5	4	5	4		

5. Содержание дисциплины

5.1 Содержание разделов дисциплины

<i>№</i>	Наименование	Содержание раздела				
n/n	раздела дисциплины	Совержиние развела				
1.	Векторная и линейная	Определители, миноры и алгебраические дополнения.				
	алгебра.	Матрицы и действия над ними. Обратная матрица. Ре-				
		шение системы алгебраических линейных уравнений				
		методом Гаусса, с помощью обратной матрицы, по				
		формулам Крамера.				
		Линейные операции над векторами и их свойства. Раз-				
		ложение вектора по базису. Векторы в прямоугольной				
		системе координат. Скалярное, векторное и смешанное				
		произведения векторов; их определения, основные				
		свойства, способы вычисления и применение к реше-				
		нию физических и геометрических задач. Собственные				
		векторы и собственные числа квадратной матрицы.				
2.	Аналитическая геомет-	Идея и метод аналитической геометрии. Уравнения				
	рия.	прямой на плоскости. Взаимное расположение двух				
		прямых. Расстояние от точки до прямой. Плоскость и				

		прямая в пространстве, их уравнения и взаимное рас-
		положение. Кривые и поверхности второго порядка:
		канонические уравнения и построение. Комплексные
2	D 1	числа и действия над ними.
3.	Введение анализ и диф-	Функция одной переменной. Предел функции. Беско-
	ференциальное исчис-	нечно малые и бесконечно большие функции, их свой-
	ление функций одной	ства. Теоремы о пределах, признаки их существования.
	переменной.	Приращение функции. Непрерывность функции в точ-
		ке и на интервале. Точки разрыва, их классификация.
		Производная функции, ее геометрический и механиче-
		ский смысл. Правила дифференцирования. Дифферен-
		циал функции, его геометрический смысл и примене-
		ние в приближенных вычислениях. Основные теоремы
		дифференциального исчисления, их геометрическая
		иллюстрация, Правило Лопиталя. Возрастание и убы-
		вание функции на интервале. Экстремумы функции
		одной переменной на интервале. Выпуклость, точки
		перегиба кривой. Асимптоты. Общая схема исследова-
		ния функции одной переменной.
4.	Дифференциальное ис-	Функции нескольких переменных, область определе-
	числение функции не-	ния. Частные производные функции нескольких пере-
	скольких переменных.	менных, их геометрический смысл. Непрерывность и
		дифференцируемость функции в точке. Полный диф-
		ференциал и его геометрический смысл. Частные про-
		изводные высших порядков. Сложные и неявные функ-
		ции нескольких переменных. Точки экстремума функ-
		ции двух переменных. Кривая в пространстве. Каса-
		тельная плоскость и нормаль к поверхности. Произ-
		водная функции по направлению. Градиент функции
		нескольких переменных (определение, вычисление,
5.	Haarmararary	свойства).
٥.	Неопределенный и оп-	Первообразная. Теорема о разности первообразных, неопределенный интеграл. Методы интегрирования,
	ределенный интегралы.	таблица интегралов. Определенный интеграл по отрез-
		ку (определение, свойства, вычисление, формула Нью-
		тона-Лейбница, геометрический смысл). Использова-
		ние интегралов в решении задач геометрии и физики.
		Несобственные интегралы.
6.	Обыкновенные диффе-	Задачи, приводящие к дифференциальным уравнениям.
0.	ренциальные уравнения.	Определение дифференциального уравнения, его по-
	ренциальные уравнения.	рядка и решения. Задача Коши и теорема Коши для
		уравнений 1-го порядка. Общее и частное решения.
		Дифференциальные уравнения высших порядков.
		Дифференциальные уравнения второго порядка, до-
		пускающие понижение порядка. Линейные дифферен-
		циальные уравнения п-го порядка. Теоремы о структу-
		ре общего решения. Линейный дифференциальный
		оператор. Линейно зависимые и независимые системы
		функций. Определитель Вронского. Методы решения
		линейных однородных и неоднородных дифференци-
		альных уравнений с постоянными коэффициентами.
		Системы дифференциальных уравнений.
	<u> </u>	O T T -F Jean-rollin

7	Vacanting representation of the second	Hymana wy waranny arany y pagaramy arany
7.	Кратные, криволинейные и поверхностные интегралы. Основы теории поля.	Интегралы, их механический и геометрический смыслы, практическое применение. Вычисление криволинейного, двойного, поверхностного и тройного интегралов. Криволинейный интеграл второго рода Формулы Грина, Стокса. Условия независимости криволинейного интеграла от пути интегрирования. Теорема Гаусса-Остроградского. Векторное поле, векторные линии. Поток векторного поля через поверхность. Дивергенция векторного поля. Циркуляция и ротор векторного поля. Специальные виды полей, их свойства.
8.	Числовые и функциональные ряды.	Числовой ряд, сходимость, сумма. Сходящиеся ряды, свойства, признаки сходимости. Степенные ряды. Интервал сходимости. Ряды Тейлора и Маклорена. Теорема о единственности разложения функции в степенной ряд. Разложение функций в степенные ряды и их использование. Ортогональные системы функций на интервале. Разложение функции в ортогональный ряд. Тригонометрический ряд Фурье. Теорема Дирихле. Разложение функции в ряд Фурье, сходимость ряда к порождающей функции.
9.	Дифференциальные уравнения с частными производными.	Линейные однородные дифференциальные уравнения второго порядка с неизвестной функцией двух независимых переменных. Дифференциальные уравнения математической физики, их физический смысл. Метод Фурье для задач с однородными краевыми условиями.
10.	Теория вероятностей и основы математической статистики.	Случайные события. Алгебра событий. Относительная частота. Классическое, геометрическое, аксиоматическое определения вероятности. Основные теоремы теории вероятностей. Формула полной вероятности. Схема Бернулли. Дискретные и непрерывные случайные величины, законы их распределения. Ряд распределения, функция распределения, плотность вероятности и числовые характеристики. Вероятность попадания случайной величины на заданный участок. Законы распределения дискретных и непрерывных случайных величин (биномиальное распределение, геометрическое распределение, распределение Пуассона, равномерное, показательное, нормальное распределения). Простейший поток событий. Неравенство Чебышева. Закон больших чисел. Центральная предельная теорема. Системы 2-х случайных величин. Вероятность попадания случайной точки в двумерную область. Плотность вероятности системы 2-х случайных величин, ее свойства. Условный закон распределения. Числовые характеристики системы 2-х случайных величин. Коэффициент корреляции. Нормальный закон распределения. Линейная регрессия. Цели и задачи математической статистики. Генеральная и выборочная совокупности. Вариационный ряд. Полигон частот, гистограмма. Эмпирическая функция распределения. Точечные и интервальные оценки параметров распределения. Доверительная вероятность, доверительный интервал.

Метод моментов. Метод наибольшего правдоподобия.
Метод наименьших квадратов. Статистическая гипоте-
за. Статистический критерий проверки гипотезы.
Ошибки первого и второго рода. Уровень значимости
статистического критерия. Мощность критерия. Про-
верка гипотезы о нормальном распределении гене-
ральной совокупности. Критерий согласия Пирсона.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми дисциплинами

№ Наименование обеспечиваемых п/п дисциплин № № разделов данной дисциплин ходимых для изучения обе (последующих) дисц						еспеч	спечиваемых		
		1	2	3	4	5	6	7	8
1.	Информатика	+	+	+	+	+	+	+	+
2.	Физика		+	+	+	+	+	+	+
3.	Механика (теоретическая механика,		+	+	+	+	+	+	+
	техническая механика, механика								
	грунтов)								
4.	Дисциплины профессионального		+	+	+	+	+	+	+
	цикла								

5.3 Разделы дисциплин и виды занятий

№ n/n	Наименование раздела дисциплины	Лекции, час.	Практи- ческие занятия, час.	СРС, час.	Всего, час.
1.	Векторная и линейная алгебра.	8	14	24	46
2.	Аналитическая геометрия.	8	14	26	48
3.	Введение в математический анализ. Дифференциальное исчисление функций одной переменной.	18	23	45	86
4.	Дифференциальное исчисление функций нескольких переменных.	8	8	18	34
5.	Неопределенный и определенный интегралы.	12	12	28	52
6.	Обыкновенные дифференциальные уравнения.	14	14	30	58
7.	Кратные, криволинейные и поверхностные интегралы. Основы теории поля.	16	27	46	89
8.	Числовые и функциональные ряды.	14	20	45	79
9.	Дифференциальные уравнения с частными производными.	4	4	4	12
10.	Теория вероятностей и основы математической статистики.	34	34	76	144
	ИТОГО	136	170	342	648

6. Лабораторный практикум – не предусмотрен.

7. Практические занятия

No n/ n	Наименование раздела дисцип- лины	Тематика практических занятий	Трудо- ем- кость (час)
1.	Векторная и линейная алгебра	Определители второго и третьего порядков и их свойства. Миноры и алгебраические дополнения. Вычисление определителей третьего порядка разложением по строке (столбцу). Понятие об определителе n-го порядка. (Решение задач)	2
2.		Матрицы и действия над ними. Вычисление обратной матрицы. Решение системы алгебраических линейных уравнений методом Гаусса, с помощью обратной матрицы, по формулам Крамера. (Групповое обсуждение и решение задач)	3
3.		Линейные операции над векторами и их свойства. Разложение вектора по базису. Векторы в прямо-угольной системе координат. Проекция вектора на ось. Направляющие косинусы вектора. Коллинеарные векторы. Деление отрезка в данном отношении. Скалярное произведение и его свойства. Угол между двумя векторами. Условие ортогональности векторов. (Решение задач)	3
4.		Компланарные векторы. Векторное и смешанное произведения векторов, их определения, основные свойства и способы вычисления. Применение скалярного, векторного и смешанного произведений к решению некоторых физических и геометрических задач. Контрольная работа: «Векторная и линейная алгебра». (Решение задач)	4
5		Собственные векторы и собственные числа квадратной матрицы. (<i>Решение задач</i>)	2
6.	Аналитическая геометрия	Уравнение линии на плоскости. Уравнение прямой на плоскости. Различные виды уравнений прямой: Угол между прямыми на плоскости. 2-х прямых на плоскости. Расстояние от точки до прямой на плоскости. (Групповое обсуждение и решение задач)	4
7.		Уравнения плоскости и прямой в пространстве. Виды уравнений плоскости и прямой в пространстве. Нормальный вектор плоскости. Направляющий вектор прямой. Взаимное расположение прямых и плоскостей. Расстояние от точки до плоскости. Уравнение плоскости, проходящей через три данные точки. Кривые и поверхности второго порядка. Контрольная работа: «Аналитическая геометрия». (Групповое обсуждение и решение задач)	8
8.		Комплексные числа и действия над ними. (Решение задач)	2
9.	Введение в математический ана-	Функция одной переменной. Предел функции. Бесконечно малые и бесконечно большие функции.	5

	лиз. Дифференциальное исчисление функций одной переменной.	Теоремы о пределах функций. Односторонние пределы. Сравнение бесконечно малых и бесконечно больших функций. Первый и второй замечательные пределы. Использование эквивалентных бесконечно малых при вычислении пределов. Контрольная работа: «Вычисление пределов». (Групповое обсуждение и решение задач)	
10.		Непрерывность функции в точке и на интервале. Точки разрыва, их классификация. Производная функции, ее геометрический и механический смысл. Вычисление производных. Дифференциал функции, его применение в приближенных вычислениях. Контрольная работа: «Вычисление производных». (Решение задач)	6
11.		Производные высших порядков. Производные функций, заданных параметрически. (Решение задач)	2
12.		Раскрытие неопределенностей по правилу Лопиталя. Признак монотонности функции. Локальный экстремум. Необходимые и достаточные условия существования локального экстремума (по первой производной). Наибольшее и наименьшее значения функции на интервале. (Групповое обсуждение и решение задач)	4
13.		Исследование функции по второй производной. Выпуклость функции, точки перегиба. Асимптоты кривых. Общая схема исследования функции. Контрольная работа: «Приложение производных». (Групповое обсуждение и решение задач)	6
14.	Дифференциальное исчисление функции нескольких переменных.	Области определения функций 2-х переменных Вычисление частных производных. Полный дифференциал. Частные производные высших порядков. Сложные и неявные функция нескольких переменных. (Решение задач)	2
15.		Кривая в пространстве. Касательная плоскость и нормаль к поверхности. Производная функции по направлению. Градиент функции нескольких переменных (определение, вычисление, свойства). (Решение задач)	2
16.		Экстремум функции двух переменных. Контрольная работа: «Функции нескольких переменных». (<i>Peшение задач</i>)	4
17.	Неопределенный и определенный интегралы.	Вычисление неопределенных интегралов с использованием таблицы интегралов, методом замены переменной и методом интегрирования по частям. (Групповое обсуждение и решение задач)	6
18.		Вычисление определенных интегралов. Вычисление двойных интегралов. Использование интегралов в решении задач геометрии и физики. Несобственные интегралы. Контрольная работа: «Неопределенный и определенный интегралы». (Решение задач)	6
19.	Обыкновенные дифференциаль-	Решение дифференциальных уравнений 1-го поряд- ка. Задача Коши. (Решение задач)	4

	ные уравнения.		
20.		Дифференциальные уравнения второго порядка, до- пускающие понижение порядка. (Решение задач)	4
21.		Методы решения линейных однородных и неоднородных дифференциальных уравнений с постоянными коэффициентами. Системы дифференциальных уравнений. Контрольная работа: «Решение дифференциальных уравнений». (Групповое обсуждение и решение задач)	6
22.	Кратные, криволинейные и поверхностные интегралы. Основы теории поля.	Изменение порядка интегрирования в двойном интеграле. Замена переменных в двойном интеграле. Переход к полярным координатам. Приложение двойных интегралов к задачам геометрии и физики. (Решение задач)	4
23.		Вычисление тройных интегралов. Замена переменных в тройном интеграле. Переход к цилиндрическим и сферическим координатам. Приложение тройных интегралов к задачам геометрии и физики. Контрольная работа: «Кратные интегралы и их приложения». (Решение задач)	6
24.		Вычисление криволинейных интегралов первого и второго рода. (Решение задач)	3
25.		Вычисление поверхностных интегралов первого и второго рода. (Решение задач)	3
26.		Формулы Грина, Стокса. Условия независимости криволинейного интеграла от пути интегрирования. (Решение задач)	4
27.		Теорема Гаусса-Остроградского. Векторное поле, векторные линии. Поток векторного поля через поверхность. Дивергенция векторного поля. Циркуляция и ротор векторного поля. Специальные виды полей, их свойства. Контрольная работа: «Криволинейные и поверхностные интегралы. Элементы теории поля». (Решение задач)	6
28.	Числовые и функциональные ряды.	Исследование на сходимость рядов с положительными членами. (Решение задач)	4
29.	•	Исследование на сходимость знакопеременных рядов. (Решение задач)	2
30.		Степенные ряды. Радиус и интервал сходимости степенного ряда. (<i>Решение задач</i>)	2
31.		Разложение функций в степенные ряды и их использование. Контрольная работа: «Числовые и степенные ряды». (Решение задач)	5
32.		Разложение периодических функций с периодом 2π в ряд Фурье, четных и нечетных периодических функций с периодом 2π .(<i>Решение задач</i>)	4
33.		Разложение периодических функций с периодом $2l$ в ряд Фурье, четных и нечетных периодических функций с периодом $2l$. Контрольная работа: «Разложение функций в ряд Фурье». (<i>Решение задач</i>)	4

ные	рференциаль- с уравнения с гными произ- ными.	Метод Фурье для задач с однородными краевыми условиями. (<i>Решение задач</i>)	4
стей тем	рия вероятно- й и основы ма- атической ста- гики.	Задачи на применение формул комбинаторики. Случайные события. Алгебра событий. Относительная частота события. Классическое, геометрическое, аксиоматическое определения вероятности. Теоремы сложения и умножения вероятностей. Условная вероятность. (Групповое обсуждение и решение задач)	6
36.		Формула полной вероятности. Формула Байеса. Схема Бернулли. Формула Пуассона. Формулы Лапласа. Контрольная работа: «Случайные события». (Групповое обсуждение и решение задач)	6
37.		Дискретные и непрерывные случайные величины. Ряд распределения, функция распределения, плотность вероятности. Вероятность попадания случайной величины на заданный участок. Числовые характеристики случайных величин. (Решение задач)	5
38.		Законы распределения дискретных и непрерывных случайных величин (биномиальное распределение, геометрическое распределение, распределение Пуассона, равномерное, показательное, нормальное распределения). Контрольная работа: «Случайные величины». (Решение задач)	5
39.		Системы 2-х случайных величин. Вероятность попадания случайной точки в двумерную область. Плотность вероятности системы 2-х случайных величин, ее свойства. Условный закон распределения. Числовые характеристики системы 2-х случайных величин. Коэффициент корреляции. Нормальный закон распределения. Линейная регрессия. (Решение задач)	4
40.		Генеральная и выборочная совокупности. Вариационный ряд. Полигон частот, гистограмма. Эмпирическая функция распределения. Точечные и интервальные оценки параметров распределения. Доверительная вероятность, доверительный интервал. (Решение задач)	4
41.		Метод наименьших квадратов. Статистическая гипотеза. Статистическая проверка статистических гипотез. Проверка гипотезы о нормальном распределении генеральной совокупности. Критерий согласия Пирсона. (Решение задач)	4
ИТ	ОГО		170

- 8. Примерная тематика курсовых проектов (работ) не предусмотрено
- 9. Учебно-методическое и информационное обеспечение дисциплины: *а) основная литература*
- 1. Н.С. Пискунов, Дифференциальное и интегральное исчисления. Т. 1, 2, М.: Наука, 2005.

- 2. В.С. Шипачев, Высшая математика, М.: Высшая школа, 2002.
- 3. В.Е. Гмурман, Теория вероятностей и математическая статистика, М.: Высшее образование, 2007.
- 4. Д.В.Клетеник, Сборник задач по аналитической геометрии, СПб.: Профессия, 2007.
- 5. Г.Н.Берман, Сборник задач и упражнений по математическому анализу, СПб.: Профессия, 2006.
- 6. В.Е. Гмурман, Руководство к решению задач по теории вероятностей и математической статистике, М.: Высшее образование, 2006.

б) дополнительная литература

- 1. Я.Ф.Бугров, С.М.Никольский, Элементы линейной алгебры и аналитической геометрии. Дрофа, 2006.
- 2. В.А.Ильин, Э.Г.Позняк, Аналитическая геометрия, М.: Наука, 1981.
- 3. В.А.Ильин, Э.Г.Позняк, Линейная алгебра, М.: Наука, 1983.
- 4. В.А.Ильин, Э.Г.Позняк, Основы математического анализа, ч. 1, М.: Наука, 1980.
- 5. В.А.Ильин, Э.Г.Позняк, Основы математического анализа, ч. 2, М.: Наука, 1982.
- 6. Письменный Д.Т. Конспект лекций по высшей математике. Часть 1 М. Айрис Пресс, 2006.
- 7. Письменный Д.Т. Конспект лекций по высшей математике. Часть 2 М. Айрис Пресс, 2006.
- 8. Письменный Д.Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам. М. Айрис Пресс, 2006.
- 9. Сборник задач по математике для втузов: Линейная алгебра и основы математического анализа, Под ред. А.В.Ефимова, Б.П.Демидовича, М.: Наука, 1986.
- 10. Е.С.Вентцель, А.А.Овчаров, Теория вероятностей и ее инженерные приложения, М.: Высшая школа, 2000.
- 11. Веселова Г.В., Кажан В.А., Ногинова Л.Ю., Обыкновенные дифференциальные уравнения. Учебное пособие с расчетными заданиями для студентов первого курса. Издательство МГУП. 2013.
- 12. Кажан В.А. Ряды. Учебно-методические указания с расчетными заданиями и консультациями. Издательство МГУП. 2008.

Варианты заданий для контрольных и самостоятельных работ, варианты домашних заданий, таблицы.

10. Материально-техническое обеспечение дисциплины

Компьютерная программа UNITEX для генерации раздаточного материала контрольных работ, домашних заданий.

Разработчики:

Профессор кафедры высшей математики

В.А.Кажан

Программа составлена в соответствии с требованиями ФГОС ВПО по направлению подготовки (специальности) 271101 «Строительство уникальных зданий и сооружений», квалификация (степень) - специалист.

Программа рассмотрена на заседании кафедры высшей математики от 23.10.2013 года, протокол № 2.

Заведующий кафедрой

С.В. Успенский