Вариант 3

Контрольная работа №1

Задача 103. Даны вершины пирамиды $A_1A_2A_3A_4$:

 $A_1(x_1;y_1;z_1)$, $A_2(x_2;y_2;z_2)$, $A_3(x_3;y_3;z_3)$, $A_4(x_4;y_4;z_4)$. Найти: 1) внутренний угол при вершине A_1 в треугольнике $A_1A_2A_4$; 2) площадь грани $A_1A_2A_3$; 3) объем пирамиды $A_1A_2A_3A_4$;

 $A_1(2;0;-1)$, $A_2(-2;-11;5)$, $A_3(1;-4;-1)$, $A_4(-2;1;-4)$.

Задача 113. Даны вершины $A(x_1; y_1)$, $B(x_2; y_2)$, $C(x_3; y_3)$ треугольника. Найти: 1) уравнение стороны AB; 2) уравнение медианы, проведенной из вершины C; 3) уравнение высоты, проведенной из вершины C; 4) уравнение прямой, проходящей через вершину C параллельно стороне AB.

A(-13;3), B(-1;-3), C(2;2).

Задача 123. Даны вершины $A_1(x_1; y_1; z_1)$, $A_2(x_2; y_2; z_2)$, $A_3(x_3; y_3; z_3)$,

 $A_4(x_4;y_4;z_4)$ пирамиды. Найти: 1) уравнение плоскости, проходящей через вершины $A_1,A_2,A_3;$ 2) угол между ребром A_1A_4 и гранью A_1 A_2 $A_3;$ 3) уравнение высоты, проведенной из вершины A_4 на грань A_1 A_2 $A_3;$ 4) уравнение плоскости, проходящей через вершину A_4 параллельно грани A_1 A_2 $A_3;$ 5) уравнение прямой, проходящей через вершину A_2 параллельно ребру A_1A_4 .

$$A_1(2;0;-1)$$
, $A_2(-2;-11;5)$, $A_3(1;-4;-1)$, $A_4(-2;1;-4)$.

Задача 203. Найти пределы функций, не пользуясь правилом Лопиталя.

a)
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 - 2} \right)^{x^2}$$
; 6) $\lim_{x \to \frac{1}{2}} \frac{4x^2 - 4x + 1}{2x^2 - 7x + 3}$; B) $\lim_{x \to 0} \frac{1 - e^{3x}}{\sin 4x}$;

$$\Gamma) \lim_{x \to 4} \frac{\sqrt{5 - x} - 1}{x - 4}.$$

Задача 213. Для заданных функций найти

- а) первую производную y' и вторую производную y'';
- б), в) первую производную y';
- г) дифференциал dy.

a)
$$y = 4x^2 - \frac{5}{3x^6} + 1$$
; 6) $y = (2x^2 - 7x) \cdot 10^{(1-x)}$; B) $y = \frac{x}{\sin^2 x}$;

$$r) y = \operatorname{ctg}^2 x.$$

Задача 223. Найти предел с помощью правила Лопиталя

$$\lim_{x\to 0}\frac{\sin x-x}{x^3};$$

Задача 233. Провести полное исследование данной функции и построить ее график

$$y = \frac{2}{x^2 + 2x}$$

Задача 243. Исследовать данную функцию z = f(x, y) на экстремум и вычислить значение функции в точках экстремума:

$$z = 3xy - x^2 - 3y^2 - 6x + 9y + 2$$
,

Задача 253. Дано уравнение поверхности в виде $F\left(x,y,z\right)=0$ или $z=f\left(x,y\right)$. Требуется составить уравнение касательной плоскости к данной поверхности в точке $M_0\left(x_0,y_0,z_0\right)$, если абсцисса x_0 и ордината y_0 заданы. Найти также аппликату z_1 точки $M_1\left(x_1,y_1,z_1\right)$, лежащей на этой касательной плоскости, если даны абсцисса x_1 и ордината y_1 точки M_1 :

$$x^2z - 2xy^2 + 2yz + y + 1 = 0, M_0(2; -1; z_0), M_1(0; 1; z_1).$$

Контрольная работа №2

Задача 303. Найти неопределенные интегралы:

a)
$$\int \frac{(1+ctgx)dx}{\sin^2 x}$$
; 6) $\int \frac{dx}{\sqrt{2-2x-x^2}}$; B) $\int \frac{\ln x}{x^2} dx$; Γ) $\int \frac{dx}{x^3+2x^2}$;

Задача 313

Найти площадь фигуры, ограниченной линиями $y=4-x^2$ и y=2-x.

Задача 323 Вычислить объем тела, ограниченного указанными поверхностями. Область интегрирования изобразить на чертеже.

$$z = 8 - x^2 - 2y^2$$
, $y = 2 - 2x$, $x = 0$, $y = 0$, $z = 0$.

Задача 403 Найти общее решение (общий интеграл) дифференциального уравнения первого порядка:

$$xy' + y \ln \frac{y}{x} = 0$$

Задача 413 Дано линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Найти частное решение, удовлетворяющее указанным начальным условиям.

$$y'' + y' = 3\cos x - \sin x$$
, $y(0) = 0$, $y'(0) = 1$;

Задача 503. Найти область сходимости ряда:

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-3)^n}{n+4};$$