Вариант 8

Контрольная работа №1

Задача 108. Даны вершины пирамиды $A_1A_2A_3A_4$:

 $A_1(x_1;y_1;z_1)$, $A_2(x_2;y_2;z_2)$, $A_3(x_3;y_3;z_3)$, $A_4(x_4;y_4;z_4)$. Найти: 1) внутренний угол при вершине A_1 в треугольнике $A_1A_2A_4$; 2) площадь грани $A_1A_2A_3$; 3) объем пирамиды $A_1A_2A_3A_4$;

 $A_1(5;-1;3)$, $A_2(8;8;-3)$, $A_3(2;0;-2)$, $A_4(4;1;0)$.

Задача 118. Даны вершины $A(x_1; y_1)$, $B(x_2; y_2)$, $C(x_3; y_3)$ треугольника. Найти: 1) уравнение стороны AB; 2) уравнение медианы, проведенной из вершины C; 3) уравнение высоты, проведенной из вершины C; 4) уравнение прямой, проходящей через вершину C параллельно стороне AB.

A(-8; 4), B(4; -2), C(7; 2).

Задача 128. Даны вершины $A_1(x_1;y_1;z_1), \quad A_2(x_2;y_2;z_2), \quad A_3(x_3;y_3;z_3),$ $A_4(x_4;y_4;z_4)$ пирамиды. Найти: 1) уравнение плоскости, проходящей через вершины $A_1, A_2, A_3;$ 2) угол между ребром A_1A_4 и гранью $A_1, A_2, A_3;$ 3) уравнение высоты, проведенной из вершины A_4 на грань $A_1, A_2, A_3;$ 4) уравнение плоскости, проходящей через вершину A_4 параллельно грани $A_1, A_2, A_3;$ 5) уравнение прямой, проходящей через вершину A_2 параллельно ребру A_1A_4 .

 $A_1(5;-1;3)$, $A_2(8;8;-3)$, $A_3(2;0;-2)$, $A_4(4;1;0)$.

Задача 208. Найти пределы функций, не пользуясь правилом Лопиталя.

a)
$$\lim_{x \to 0} \frac{tg \, 2x \cdot \sin \, 2x}{2x^2}$$
; 6) $\lim_{x \to -1} (3x + 4)^{\frac{2}{(x+1)^2}}$; B) $\lim_{x \to \infty} \frac{1 - 3x^2 + 2x^3}{(1+x)^3}$; r) $\lim_{x \to 5} \frac{7x - 10 - x^2}{\sqrt{6 - x} - 1}$.

Задача 218. Для заданных функций найти

- а) первую производную y' и вторую производную y'';
- б), в) первую производную y';
- г) дифференциал dy.

a)
$$y = 1 - \frac{2}{x^6} - \frac{(x+1)^2}{3}$$
; 6) $y = \sqrt{x} \cdot \arccos(1-x^2)$; B) $y = \frac{3+2x}{\sin^4 x}$;

r)
$$y = \cos^3 7x$$
.

Задача 228. Найти предел с помощью правила Лопиталя

$$\lim_{x\to +\infty} \frac{\ln^4 x}{x^9};$$

Задача 238 Провести полное исследование данной функции и построить ее график

$$y = \frac{x^2 - 2}{x}$$

Задача 248. Исследовать данную функцию z = f(x, y) на экстремум и вычислить значение функции в точках экстремума:

$$z = 3xy - x^2 - 3y^2 + x + 3,$$

Задача 258. Дано уравнение поверхности в виде $F\left(x,y,z\right)=0$ или $z=f\left(x,y\right)$. Требуется составить уравнение касательной плоскости к данной поверхности в точке $M_0\left(x_0,y_0,z_0\right)$, если абсцисса x_0 и ордината y_0 заданы. Найти также аппликату z_1 точки $M_1\left(x_1,y_1,z_1\right)$, лежащей на этой касательной плоскости, если даны абсцисса x_1 и ордината y_1 точки M_1 :

$$z = 2x^2 + y^2 + 3y$$
, $M_0(2;-2;z_0)$, $M_1(1;0;z_1)$.

Контрольная работа №2

Задача 308. Найти неопределенные интегралы:

a)
$$\int \frac{(1-tg^2x)dx}{\cos^2 x}$$
; 6) $\int \frac{dx}{\sqrt[3]{2x-7}}$; B) $\int x \sin 4x dx$; $\int \int \frac{dx}{x^3+4x^2+3x}$;

$$_{\text{Д}}$$
). $\int \cos 3x \cos 4x dx$

Задача 318

Найти объем тела, образованного вращением вокруг оси Ox

фигуры, ограниченной линиями $y = \sqrt{2x}$ и y = x.

Задача 328 Вычислить объем тела, ограниченного указанными поверхностями. Область интегрирования изобразить на чертеже.

$$z = 2x^{2} + 3y^{2}$$
, $x + y = 1$, $x = 0$, $y = 0$, $z = 0$.

Задача 408 Найти общее решение (общий интеграл) дифференциального уравнения первого порядка:

$$y' + 2xy = 2x^3y$$

Задача 418 Дано линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Найти частное решение, удовлетворяющее указанным начальным условиям.

$$y'' - 3y' = x + \cos x$$
, $y(0) = 0$, $y'(0) = -\frac{1}{9}$;

Задача 508. Найти область сходимости ряда:

$$\sum_{n=1}^{\infty} \left(-1 \right)^{n+1} \frac{\left(x \, + \, 2 \right)^n}{3^n \, \cdot \, n} \; ;$$